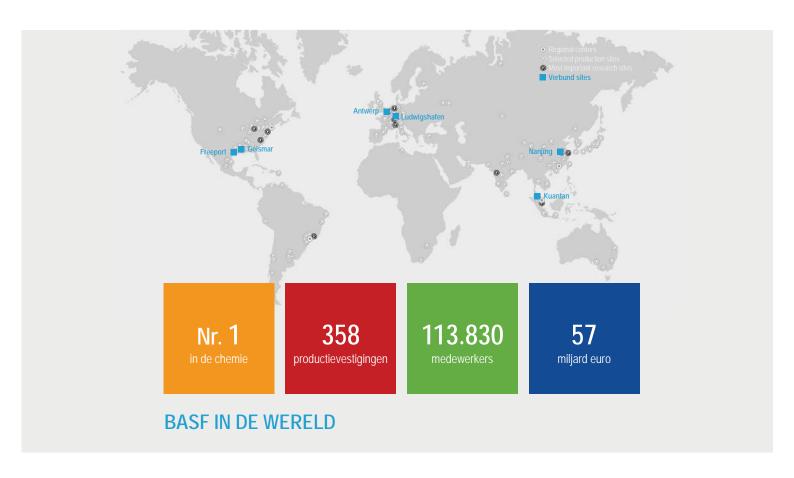


Functional Safety Management

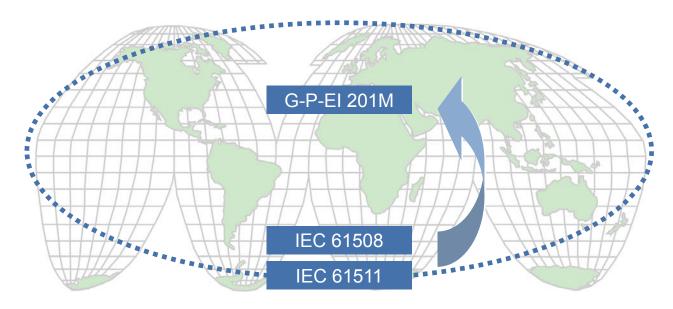

KicMPi-bijeenkomst Safety Integrity Level (SIL)

Jan Luyts, BASF Antwerpen nv

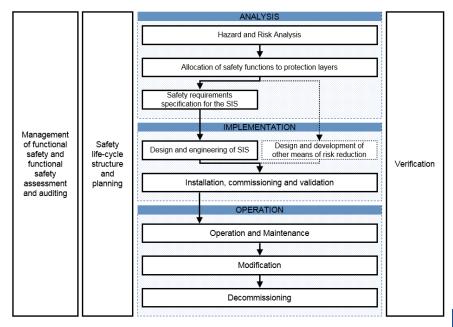
Terneuzen, 25 januari 2018

BASF SIS Approach

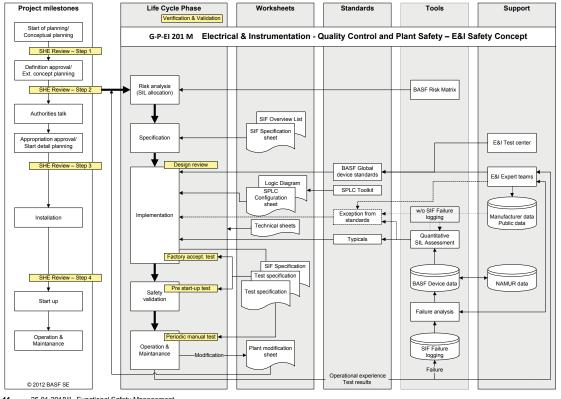
Data 2016
> 100 Sites
> 710 Plants
> 18.800 SIF's
> 84.500 Devices


BASF SIS Approach

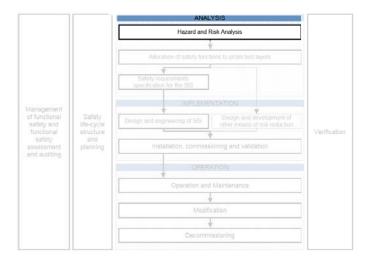
3 25.01.2018/jl Functional Safety Management


■ BASF We create chemistry

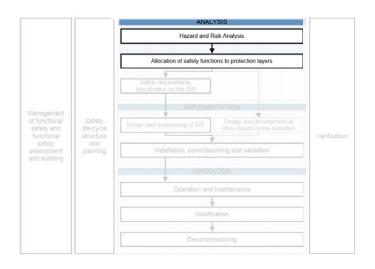
BASF SIS Approach



Management of Functional Safety & Life Cycle Requirements

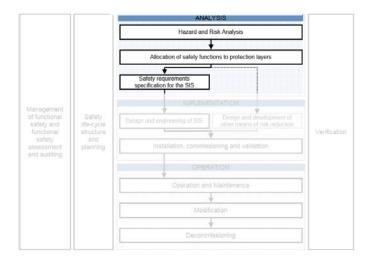

■ ■ BASF We create chemistry

25.01.2018/jl Functional Safety Management


Hazard and Risk Analysis

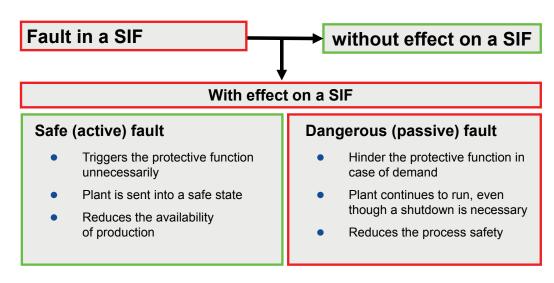
25.01.2018/jl Functional Safety Management

Allocation of safety functions

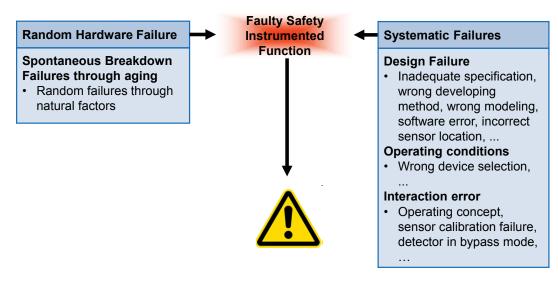

-	Risk Matrix			
VIALON S				
Probability	S ₁	S ₂	S ₃	S,
P ₀	A.	В	D	E
P ₁	A/B*		E	E
P ₂	В	С	E	F
P ₃	С	D	F	F
P _d	Ε	F	F	F

Probability: P _e	Happened a couple of times (once per year or more often)
Ρ,	Happened once (Approx. once in 10 years)
Ρ,	Almost happened, near miss (Approx. once in 100 years)
Ρ,	Never happened, but is thinkable (Approx. once in 1,000 years)
P.	Not plausible (less than once per 10,000 years)
Severity:	(Health Effects)
8,	On site: Potential for one or more fatalities
S ₂	On site: Potential for one or more serious injuries (irreversible)
S ₃	On site: Potential for one or more lost time injuries
8.	On site: Potential for minor injuries, or imitation

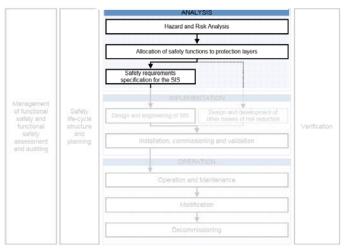
Risk Class Risk Level		Minimum Requirements		
A	Extreme, totally unacceptable risk	Process or design change preferred		
В	Very large, unacceptable risk	Process / design change, or one protective measure of SIL 3 equivalent (PSV, SIS, etc.)		
С	Large, unacceptable risk	Process / design change, or one protective measure of SIL 2 equivalent (PSV, SIS, etc.)		
D	Medium, acceptable risk, which should be further reduced	One monitoring device of high quality with documented testing		
E	Small, acceptable risk, which may be further reduced	One monitoring device		
F	Very small, acceptable risk	None		


Safety Requirements Specifications

25.01.2018/jl Functional Safety Management



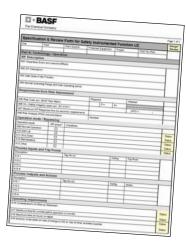
Safety Requirements Specifications Faults within Instrumented Installations


Safety Requirements Specifications Faults within Instrumented Installations

■ • BASF We create chemistry

25.01.2018/jl Functional Safety Management

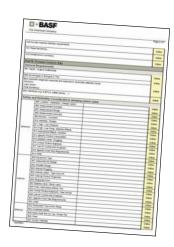
Safety Requirements Specifications



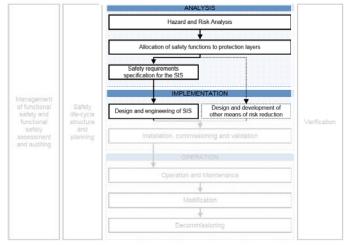
- Basics Design Rules for SIF:
 - SIF's should be as simple as possible
 - SIF's shall not be carried out in the BPCS (e.g. "standard" DCS)
 - A breakdown based on a dangerous fault in a SIF is not tolerable
 - A dangerous fault may not lead to a hazardous condition
 - ► Trip functions may not automatically be reset after the process variable has returned to its normal value again
 - Whenever feasible, devices shall be used which have the capability to go to a predetermined safe state in the event of a specific malfunction
 - Analog values shall be used whenever possible
 - Measures should be taken to increase the online diagnostic coverage, e.g. through A-B-channel-comparison for analog signals, signal plausibility checks or other means
 - SIF's and the components which are part of a SIS (e.g. transmitter, power supply, I/O card of a logic solver) shall be clearly marked
 - → Good Engineering Practices

Safety Requirements Specifications

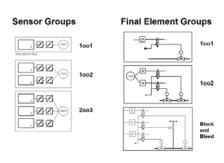
- General plant information
- Requirements from Technology and Operation
 - SIF Description
 - Requirements from Risk Assessment
 - Safety-relevant process values and their trip limits
 - Safety-relevant Process outputs and dedicated actions
 - Operational requirements
 - Manual actions or
 - Time of uninterrupted operation
 - Repair time
 - ..



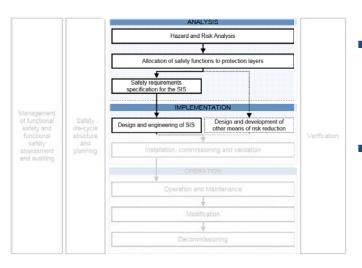
25.01.2018/jl Functional Safety Management

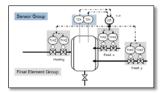

Safety Requirements Specifications

- Requirements from Process control / E&I
 - Detailed function
 - ▶ Requirements for diagnostics
 - Interfaces
 - Special requirements for sensors and/or final elements based on environmental conditions or requested reliability/accuracy
- Regional requirements
- Roles and Responsibilities
 - Technology: Persons deeply involved in the process and participating or knowing the results of the safety review
 - E&I: Persons participating or knowing the results of the safety review
 - Responsibility for completeness and correctness of the SIF requirements including change order based on the Safety review
 - Four-eye-principle

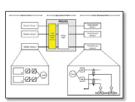


Design and engineering of SIS

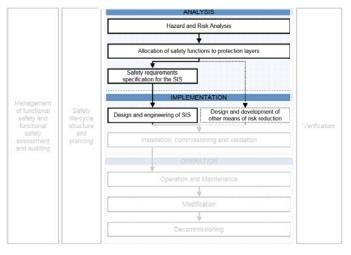

Sensor and Final Element groups


■ ■ BASF We create chemistry

25.01.2018/jl Functional Safety Management


Design and engineering of SIS

SIF Standard Hardware Structures:


Typicals:

Limits of Standard HW Structures have to be taken in to account

Design and engineering of SIS

- Only field devices or logic solvers that comply with BASF's "Global Standard List (GSL) for Instrumentation" shall be used for new Safety Instrumented Functions
- Devices not on the GSL shall only be used if
 - it can be shown that the device is proven in use in a chemical plant environment for at least one year prior to date of delivery to BASF without any dangerous failure and
 - the regional working group responsible (e.g. in BASF SE: CoE Instrumentation, BASF Corporation I&C COE, etc) for that type of device has agreed and a risk analysis was performed
- SPLC's working as a logic solver shall only be used for SIS if they are certified by an independent organization (e.g. TUV)

25.01.2018/jl Functional Safety Management

Design and engineering of SIS BASF Standard Device

- Test in acc. to IEC 770 and NE95 in the E&I equipment test center
 - Check of specification (desired functions of the device)
 - Check of influencing factors (U, T, p, EMC, ...)
 - ► Load/stress tests (e.g. ball valves or switching amplifiers 100,000 switching's, pressure sensors 500,000 load changes)
- Workshop check
- Operational experience (acc. NE130)
 - Period of one to two years
 - Evaluation of handling, parameterization, failures

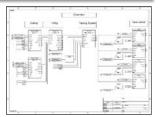
Design and engineering of SIS BASF Global Standard Device List

- Standardization of equipment and installation materials is an essential means in improving E&I planning, engineering, installation and maintenance activities.
- Key advantages
 - Costs
 - Stocking of spare parts
 - Quality assurance
 - Availability
 - Use in safety instrumented systems
 - Central documentation

25.01.2018/jl Functional Safety Management

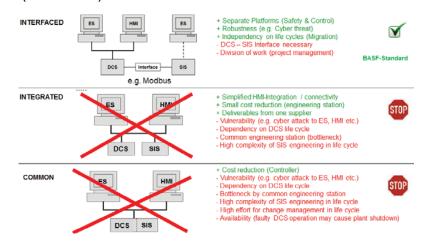
Design and engineering of SIS Global Standard Device List for Logic Solvers

■ SPLC's or hardwired systems shall only be used for SIS if they are IEC 61508 certified by an independent organization (e.g. TÜV) and listed on the BASF Standard device list!



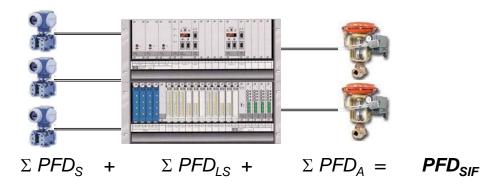
Design and engineering of SIS Application software

- BASF Standard Software Structures
 - ▶ BASF SPLC-Toolkit for application software
 - Optimized for use with BASF standard hardware structures
 - Parameterization instead of programming
 - Safety and Economic Efficiency


Triconex

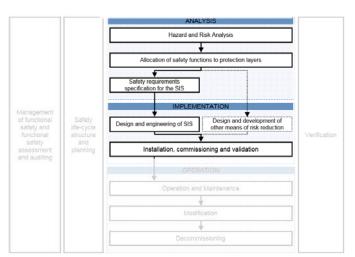
■ BASF We create chemistry

25.01.2018/jl Functional Safety Management

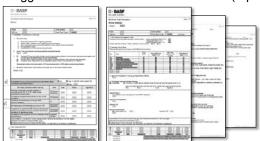

Design and engineering of SIS Safety and Economic Efficiency

Levels of Integration (DCS / SIS)

Design and engineering of SIS PFD of a Safety Instrumented Function

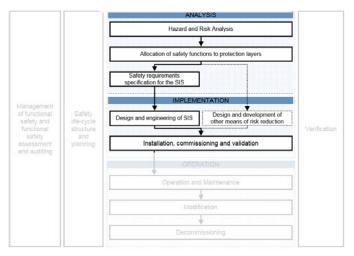


Standard hardware structures (Typicals) that have been verified for SIL2 and SIL3 hardware safety integrity requirements.



25.01.2018/jl Functional Safety Management

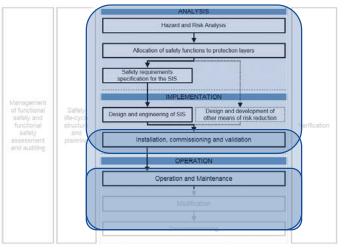
Installation, commissioning and validation



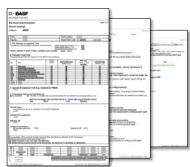
- Installation
- FAT (Factory Acceptance Test)
- SAT (Site Acceptance Test)
- PSAT (Pre Startup Test)
 - ▶ Staggered Test or Function-oriented Test (Pipe to Pipe)

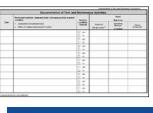
■ - BASF We create chemistry

Installation, commissioning and validation

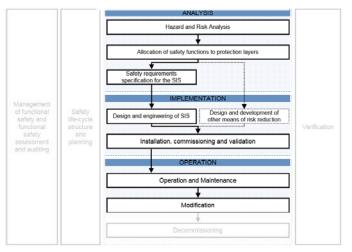


- SHE Step 4 Review
 - Validation that the SIS was built, installed and tested according SRS
 - ► Test procedure(s) for the regular proof test are in place
 - Safety Review recommendations that apply to the SIS have resolved or implemented
 - Employee training has been completed
 - Documentation has been fully completed
 - ► Test results are documented, signed by BASF SIS Engineer and Plant Manager

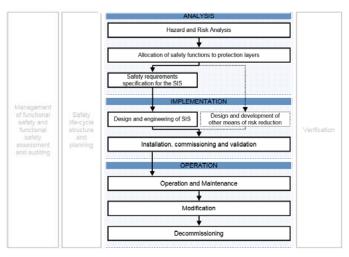

■ - BASF We create chemistry


25.01.2018/jl Functional Safety Management

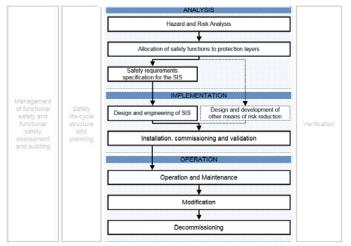
Operation and Maintenance


- Operation
- Periodic proof test
- Maintenance
- Test after repair
- Test after modification

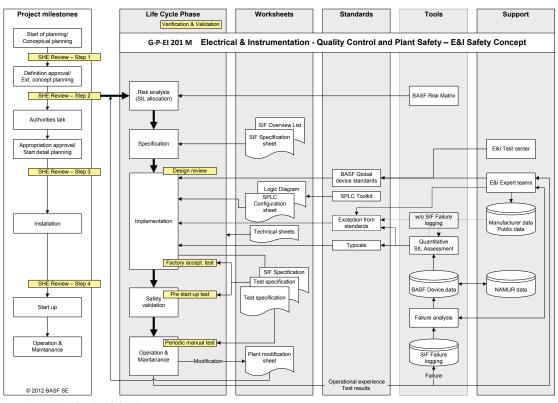
Modification


- Types of Modification
 - ▶ Plant modification / Trip point change / Parameter change
- Plant Modification Sheet Form
 - Description of the modification or change
 - Reason for the change
 - Identified hazards which may be affected
 - Analysis of the impact of the modification activity on the SIS
- Additional documentation
 - ▶ Hard- & software changes, new device data sheets, ...
- Test
 - As PSAT but only for the affected SIF part
 - If possible use of automatic application software comparison

25.01.2018/jl Functional Safety Management


Decommissioning

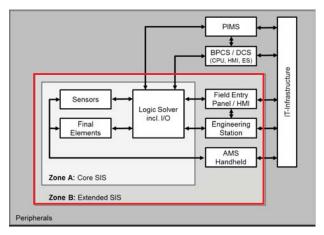
- Hazard analysis
 - Update of the hazard and risk assessment
 - Determination which subsequent safety life cycle phases shall need to be revisited
 - ► Functional safety during the execution of the decommissioning activities
 - ► The impact of decommissioning of a SIS on adjacent operating units and facility services
- The results shall be used to re-implement the relevant requirements including re-verification and re-validation.
- MOC procedure


Verification and Validation

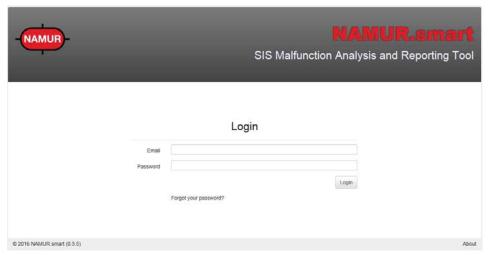
- Continuous inspection in every step of the safety life cycle
 - → Verification
 - ► For-Eyes-Principle → a person that is independent from the current work step
 - Responsible: E&I Engineer, Lead Engineer, Asset and/or Maintenance Manager
- Functional Safety Assessment → Validation
 - Technical expert
 - Surveyor
 - Authorities
 - **.**..

■ • BASF We create chemistry

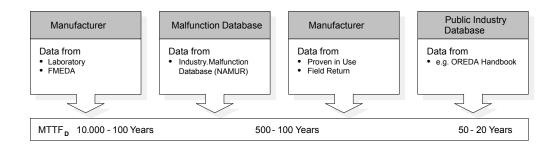
25.01.2018/jl Functional Safety Management



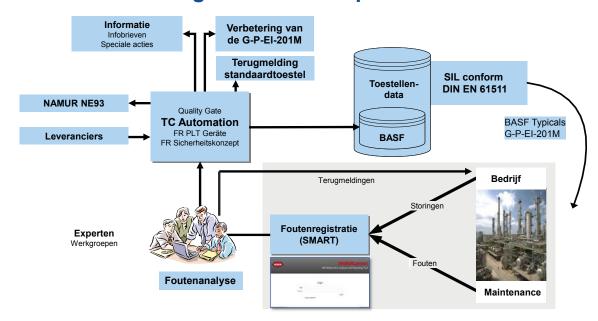
Automation Security


Security for Safety Instrumented Systems

■ ■ BASF We create chemistry


25.01.2018/jl Functional Safety Management

Monitoring and analysis for SIS

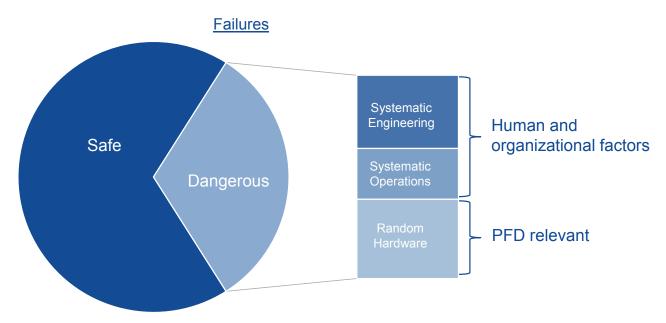

Comparison of Reliability Data

■ ■ BASF We create chemistry

25.01.2018/jl Functional Safety Management

SIF Malfunction Recording - BASF-concept

NAMUR.smart to BASF-concept


Investigation of Dangerous failures

■ - BASF We create chemistry

25.01.2018/jl Functional Safety Management

Distribution of Failures of Instruments

Functional Safety Management

■ • BASF We create chemistry

25.01.2018/jl Functional Safety Management

We create chemistry