LOCTITE PULSE

KIK MPI

Kennis- en innovatiecentrum Maintenance Procesindustrie

LOCTITE Pulse

Webinar INNO-BREAK - 04/07/23

Rob Helmich – Account Sales Engineer MRO NL Jan Van Put – Business Development Manager WE MRO4.0

SALES

EXPERIENCE

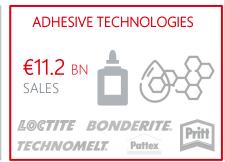
147 YEARS

EMPLOYEES

52,950 EXPERT

EBIT

ACTIVE IN


MANUFACTURING IN

€2.3 BN

€22.4_{BN}

150 COUNTRIES 184 SITES

CONSUMER BRANDS **€11** BN

SALES

€11.2_{BN} €1.5_{BN}

- Global market leader
- Only player present across all segments
- Truly global footprint, active in more than 150 countries
- Long trusted partnerships with > 130,000 customers across broad range of industries

The trusted choice for high-performance adhesive, sealant, coating & cleaner solutions across industries.

HOW OUR OFFERING EVOLVES

FROM 'REACTIVE' TO 'PRESCRIPTIVE'

Time/Complexity

LOCTITE Pulse is building up on 4 Mega Trends

Digitalization

- Processing power
- Connectivity
- Storage cost
- Software improvements

Sustainability

- Increased regulatory requirements
- Shift of stakeholder focus

Energy Costs

- Increasing cost of fossil fuels
- Energy transition
- Aging infrastructure

Skills Shortage

- Finding trained workforce becoming more challenging
- Aging workforce
- Increasing labor cost
- Increased skill requirements & complexity

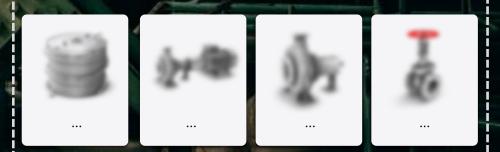
PREDICT YOUR EQUIPMENT'S NEXT MOVE

Continuous Monitoring Solution

LOCTITE Pulse

Available

Smart Flange



Smart Pipe

Smart Steam Trap

Coming soon

KNOWN INDUSTRY PAIN POINTS

BENEFITS OF LOCTITE Pulse

Leakages cause **unplanned downtime** and thus significant **opportunity costs**.

By **detecting leaks before they escape** to the environment, repairs can be planned, and **unplanned downtime reduced**.

Manual inspection of critical flanges as well as their **repair** cause significant **personnel** and **material costs**.

Continuous monitoring **reduces need for manual inspection** of critical flanges. In addition, **repair costs** can be significantly **decreased through advance planning**.

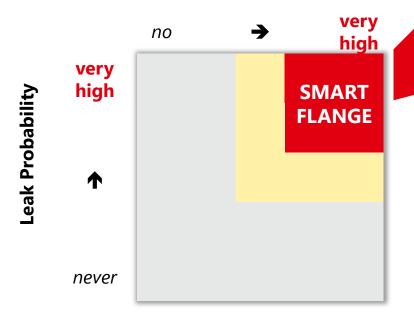
Undetected leaks can lead to **catastrophic failures** and present a significant **safety risk**.

Early detection of leakages can prevent catastrophic failures and **increase plant safety**. In addition, **HSE risks associated with inspection or repair** can be reduced.

Leaks of critical media can result in significant **environmental** and **reputational damage**.

The leakage of environmentally harmful media to the environment is prevented, thus increasing sustainability and protecting reputation.

Manual inspection and **documentation** lead to **low transparency** about weak points and hamper optimization.


Continuous digital documentation of the asset status and its accessibility **increase transparency** and **reveal potential for improvement**.

TOP APPLICATIONS FOR SMART FLANGE

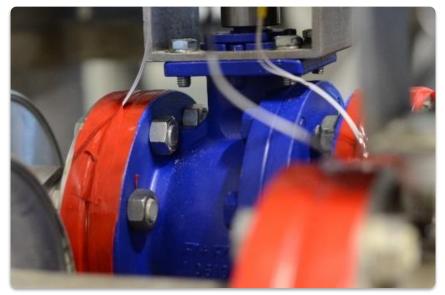
HOW TO IDENTIFY CRITICAL FLANGES

Leak Consequences

Environmental factors, Hazardous media, local environmental requirements and conditions

Hardly accessible & low inspection frequency: e.g. buried, under insulation

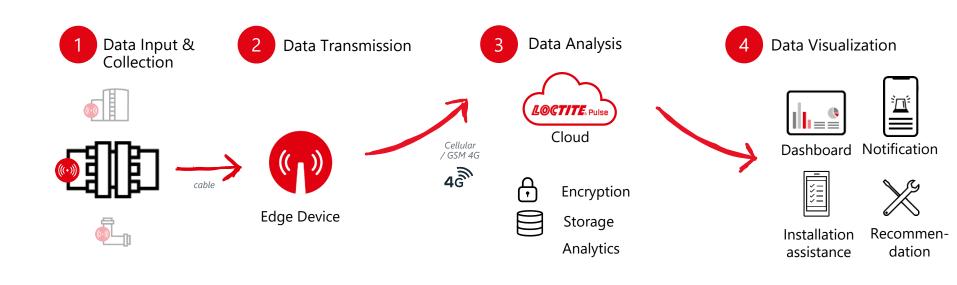
Safety plant condition, corrosiveness of media, people working close by



Technical & Regulatory e.g. flange size or recent changes of regulations like adaption of safety precautions so that the operating license remains intact

LET'S TAKE A LOOK AT THE SOLUTION!

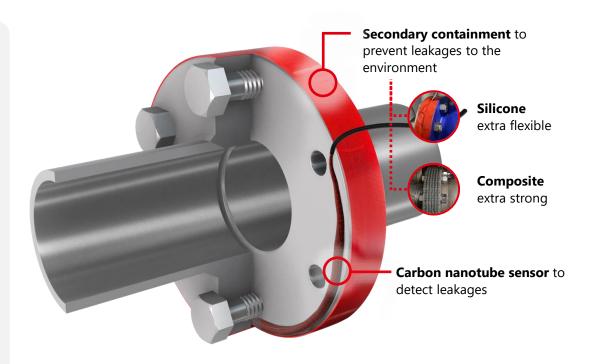
SMART FLANGE INSTALLATION EXAMPLES



WHAT DOES OUR SOLUTION SET-UP LOOK LIKE?

sensor & hardware purchase

monthly subscription loT as a Service


1 DATA COLLECTION

HOW IS THE DATA COLLECTED?

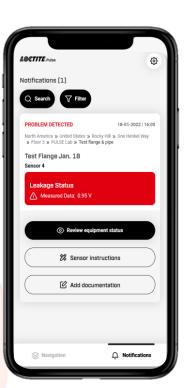
CONTINUOUS MONITORING OF CRITICAL FLANGES

- INNOVATIVE: Novel, patented carbon nanotube technology reacts in < 1 min
- NON-INTRUSIVE: Retrofit, no shutdown required
- PEACE OF MIND: Secondary containment can slow down the leakage and gives time for planning the repair
- ALWAYS ON: continuous reporting of leaks – 24/7, 365 days a year
- RELIABLE: Robust and consistent signal generation
- CUSTOMIZABLE: Two Secondary Containment options
- SPECIFIC: Detection of liquid hydrocarbons. Not influenced by humidity.

HOW IS THE DATA TRANSMITTED AND ANALYZED?

DATA TRANSMISSION AND ANALYSIS

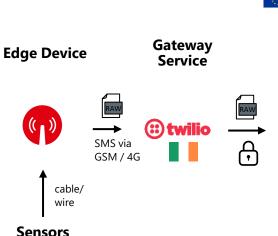
- SELF-SUFFICIENT: No local power supply needed thanks to battery with a service life of up to 5 years
- INDEPENDENT: Independent of local network thanks to cellular communication
- ROBUST: Robust design for indoor and outdoor use
- CLOUD-BASED: Efficient operation thanks to intelligent division of local and cloud-based data analytics
- SECURE: Compliance with state-of-the art IT security standards
- SAFE: Certified explosion protection
- Cost Efficient: Part of Subscription


MENU

HOW IS THE INFORMATION ACCESSIBLE AND VISUALIZED?

PROVISION OF INFORMATION OPTIMIZED FOR USER NEEDS

- INDEPENDENT: Web-based platform independent of end device or operating system
- ONE-STOP-SOURCE: All LOCTITE® Pulse solutions are integrated into one system
- ACCESSIBLE: Location-independent access to the information
- USER-FRIENDLY: Simple and intuitive handling and installation
- CUSTOMIZABLE: Content and structures adaptable to customer requirements
- ROLE-BASED: Role-dependent preparation of data and functions



LOCTITE PULSE SOFTWARE ARCHITECTURE

SMART FLANGE - OVERVIEW

Functions:

- Data Storage
- raw data ingestion & conversion
- Data transmission across multiple platforms

Tools:

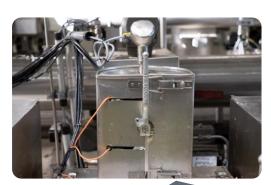
- Azure Data Lake Gen 2
- AZ Event Hub
- MS Azure Functions
- AZ Data Factory
- AZ Keyvault

Functions:

- Data enrichment
- Visualization
- Web App Service
- Authentication
- Notification Service

Tools:

- AZ SQL database
- AZ Service Bus
- AZ Blob Storage
- MS AZ function
- AZ Logic Apps



HOW WE HELPED A REFINERY WITH SMART LEAK DETECTION TO REDUCE COSTS AND DOWNTIME

EXEMPLARY SUCCESS STORY - H&R SALZBERGEN

Problem

Reoccurring hydrocarbon leakages cause unplanned downtime, repair costs and HSE risks.

Covered under **insulation**!

Solution

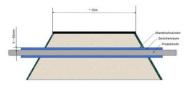
Smart monitoring solution warns operator with notifications when a leakage occurs.

Additional safety thanks to **secondary containment**!

Results

Secondary level of safety due to **early detection** of leakages

Reduction of manual inspection efforts and removal of insulation



SHELL ENERGY AND CHEMICALS PARK RHEINLAND

Manual inspection of critical pipes at street crossings are mandatory, time consuming and expensive

CONFIDENTIAL

Solution

Continuous monitoring of pipes under the street crossing with carbon nano tube sensors

16 m long sensor set including accessories

Carbon nanotube sensor detects even smallest leakages

Results

Secondary level of safety due to **early detection** of leakages

Reduction of manual inspection efforts

KNOWN CHALLENGES

Manual inspection

24/7 inspection with increased detection rate

Delayed fault detection

React immediately to errors

Energy losses & CO2 emissions

Reduction of energy losses

Water hammer

Reduced risk

Condensate accumulation & downtimes

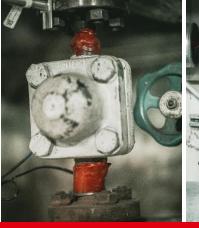
Increased process reliability and quality

STEAM TRAPS

COMMON PROBLEMS

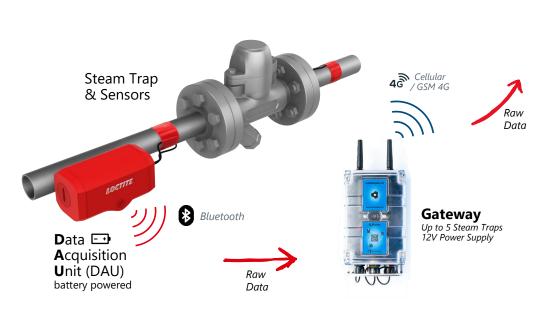
Stuck Open

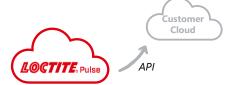
- Steam Loss
- CO2 Emissions


Stuck Closed

- Water Hammer Consequences
- No Condensate Removal

LET'S TAKE A LOOK AT THE SOLUTION!





SCHEMATIC SOLUTION OVERVIEW

FROM SENSOR TO RESULTS

Analyzed

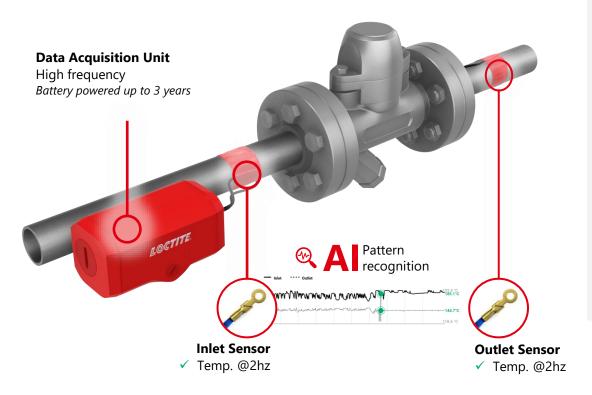
& Raw

Data

Encryption

Storage

Analytics


- ✓ Inst. Assist.
- Notifications
- Dashboard
- Documentation

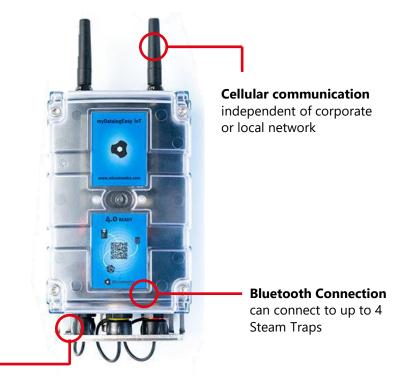
1 DATA COLLECTION

MENU

HOW IS THE DATA COLLECTED?

CONTINUOUS MONITORING OF STEAM TRAPS

- NON-INTRUSIVE: Retrofit, no shutdown required
- QUICK & EASY ROLL OUT: start monitoring Steam Traps in short time
- ALWAYS ON: continuous reporting of failures – 24/7, 365 days a year
- RELIABLE: High failure detection probability
- ALL-IN-ONE: Detection of all relevant Steam Trap failure types.



HOW IS THE DATA TRANSMITTED?

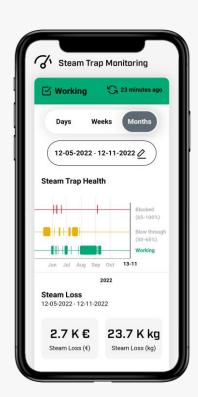
COST EFFICIENT & SECURE DATA TRANSMISSION

- SECURE: Independent of local network thanks to cellular communication
- ROBUST: Robust design for indoor and outdoor use
- SAFE: ATEX certified
- LOW CAPEX: Part of Subscription Service

Power

Requires external power supply

4 DATA VISUALIZATION


Photo for quick identification of Steam Trap

Current Steam Trap **Condition** and access to raw data

Analytics results and condition history

Information on *steam loss (kg)* & *monetary losses (€)*

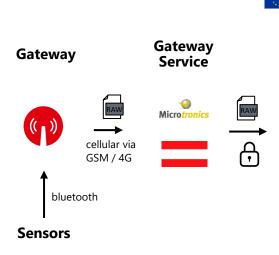
Steam Trap maintenance *documentation* tools & *history*

MENU

HOW IS THE INFORMATION ACCESSIBLE AND VISUALIZED?

PROVISION OF INFORMATION OPTIMIZED FOR USER NEEDS

- INDEPENDENT: Web-based platform independent of end device or operating system
- ONE-STOP-SOURCE: All LOCTITE® Pulse solutions are integrated into one system
- ACCESSIBLE: Location-independent access to the information
- USER-FRIENDLY: Simple and intuitive handling and installation
- CUSTOMIZABLE: Content and structures adaptable to customer requirements
- ROLE-BASED: Role-dependent preparation of data and functions



LOCTITE PULSE SOFTWARE ARCHITECTURE

OVERVIEW

Functions:

- Data Storage
- raw data ingestion & conversion
- Analytics data evaluation & storage
- Data transmission across multiple platforms

Tools:

- Azure Data Lake Gen 2
- AZ Event Hub
- MS Azure Functions
- AZ Data Factory
- AZ Keyvault

Functions:

- Data enrichment
- Visualization
- Web App Service
- Authentication
- Notification Service

Tools:

A

- AZ SQL database
- AZ Service Bus
- AZ Blob Storage
- MS AZ function
- AZ Logic Apps

STEAM TRAP MONITORING – VALUE CALCULATION

COMPARISON OF DIFFERENT INSPECTION FREQUENCIES

Annual Inspection Standard for most ST Repair of broken ST Broken ST

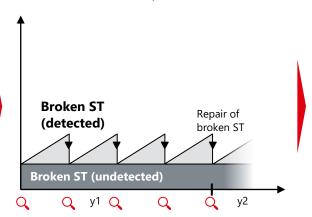
(detected)

Very high failure hours

Broken ST (undetected) due to low

Low inspection cost

y1


High total cost

inspection reliability

Number of broken steam traps

Quarterly Inspection

at increased inspection cost

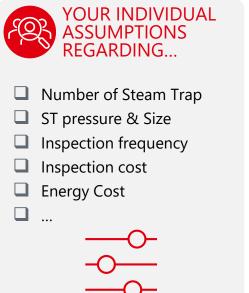
- High failure hours
- High inspection cost
- Reduced total cost

LOCTITE Pulse

Continuous ST Monitoring

- ✓ Failures are detected quickly
- ✓ ST can be repaired with little delay

- Low failure hours
- Medium inspection cost
- Lowest total cost



Inspection & repair
Detection probability of ST failure with manual inspection ~80% due to tool reliability and changing ST conditions

y2

VALUE CALCULATION

STEAM TRAP

	Steam Trap Value calculator				
Prepared by					
Date Prepared					
Customer Company		Phone			
Contact Name		E-Mail			
Address		Note:			
Definition	General Para meter	Manual ST Inspection		SMART STEAM TRAP	
		Value	Unit	Value	U
General Parameters	Number of Steam traps installed	4	1	4	1
regard to the number of assets and	Average steam trap Life expectancy Expected Total Number of defective steam	4	1	4	- 1
fakire frequency	A traps per year	1	1	1	1
	B Inletsteam line gauge pressure (Psig)	20,00	bar	20,00	bar
	C Steam Pipe Size to steam trap	25	DN	25,00	DN
	D Diameter of orifice	6.4	mm	6.4	mm
	E Annual operating hours	8.760	br	8.760	br
	F Cost of steam per ton	30,00	€/tonne	30,00	€/ton
	r car or acam per am	30,00	Cytomic	30,00	- Cyton
Inspection Parameters	a Trap survey and maintenance interval	ly	Real time monitoring		
describe the personnel efforts	H Inspection & documentation cost per	25,00	€	25,00	€
associated with the repair, inspection and documentation of steam trap	steam trap				
	Total Annual inspection cost	100,00	É	100,00	€
Steam Loss Parameters	J Steam loss per steam trap (242-90-91-2)	75,92	kg/hr	75,92	kg/hr
describe the annual steam loss	K Total annual steam loss	441.854	lig/yr	3.720	kg/yr
caused by leakage of failed steam trap	L Annual Steam Loss Cost	13.256	€/yr	111,60	€/уг
Water Hammer Parameters	Severity level of water hammer incident	Major		Major	
describes the annual loss caused due to the water hammer incident in	Financial loss caused by water hammer per	100.000		100,000	€
terms of financial losses as per	event (due to stuck closed ST) Annual Financial loss caused by water				
accident event basis	Annual Financial loss caused by water hammer	292	€/yr	2	€/yr
Condensate Stall	Severity level of condensate stall to steam	Major		Major	
Parametersdescibes the loss occured due to	line incident	najor		magni	
stuck closed steam trap, which provides the wet steam at the end of	Production loss due to condensate stall in the process	\$0.000	€	50.000	€
application	Annual financial loss caused due to condensate stall in process	727	€/yr	6	€/yr
Material cost Parameters	Material cost to repair one steam trap	1,000	€	350	€
describes material cost for repair	Annual material cost	1,000	€	350	
	Periodic realization Cont	1200		230	_
	Steam Loss Cost Savings	13.144	€/a		
	Inspection Cost Savings	0	€/a		
	Financial Loss due to WH savings	290	€/a		
	Financial Loss due to Condensate stall savings	721	€/a		
	Material Cost savings	650	€/a		
	Annual Gross Savings	14.155	€/a		
	*CO2 emission per year savings	70	metric ton	ne	

Savings due to improved inspection

CO2 Savings

Annual (net) value added

HOW WE HELPED A CHEMICAL PLANT WITH SMART STEAM TRAP TO REDUCE STEAM LOSS

SUCCESS STORY – BASF LUDWIGSHAFEN

D-BASF

Problem

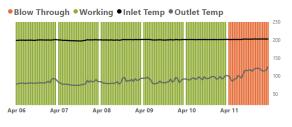
infrequent manual inspection leads to high steam losses, costs & avoidable CO2 emissions

Bi-Metallic Steam Trap

Solution

Smart monitoring solution warns operator with notifications when a leakage occurs.

Quick and easy install


Results

Detection of **Blow Through** shortly after installation of sensors

Secondary level of safety due to **early detection** of potential condensate stall

SUCCESS STORY – HENKEL DÜSSELDORF

Problem

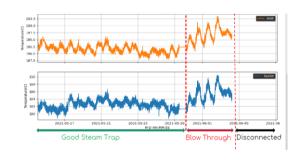
infrequent manual inspection leads to high steam losses, costs & avoidable CO2 emissions

Floating Ball Steam Trap

Solution

Continuous Monitoring of **45** steam traps of different kinds and sizes

Quick and easy install


Results

Detection of **Blow Through** shortly after installation of sensors

Secondary level of safety due to early detection of potential condensate stall

