

+25% *Year over Year* Growth since 2004

26

Number offices, alliance partners and distributors

 \bigcirc

18

Countries we support

[√]Nurture long-term relationships with our clients

AGEING MANAGEMENT

Material Degradation

Obsolescence

Material properties

Source:

- Operation conditions
- Environmental conditions
- Maintenance Practice

• Equipment "out of date

- New Needs
- New technology
- New requirements

Organizational issues

- Reorganization
- Ageing of personnel
- Transfer of knowledge

Material & Asset Degradation

MATERIAL & ASSET DEGRADATION

2 RESILIENCE /rɪˈzɪlɪəns/

3 DETECT THE START OF DEGRADATION

MAINTENANCE STRATEGIES

2 RESILIENCE /rɪˈzɪlɪəns/

3 DETECT THE START OF DEGRADATION

Care 4.0 SINCE '04

I-mining

Care '94.0 SINCE '04

<u>I-mining</u>

I-mining

I-mining

In Depth Cluster Analysis

The user can select what cluster is most interesting for further analysis. This cluster can be picked from the pareto chart.

The technician feedback of the intervention is analyzed by an NLP algorithm, displaying the most relevant words in a Word cloud.

This visualization can be used for further Root cause analysis and triggering focused improvement projects.

2 RESILIENCE /rɪˈzɪlɪəns/

Care 4.0 SINCE '04

Peak in wear-out (WaaS)

MATERIAL & ASSET DEGRADATION

DETECTABILITY USING VIBRATION: BASED ON 11.469 DESIGN FAILURE MODES

ALL FAILURE MODES 21,32%
"Age related" Failure modes 28,26%

- 1 MAINTENANCE STRATEGIES
- 2 RESILIENCE /rɪˈzɪlɪəns/
- **3** DETECT THE START OF DEGRADATION

Equipment Obsolescence

- Revamping + Energy efficiency
- Proactive Maintenance
- Stock management

- Revamping + Energy efficiency
- Proactive Maintenance
- Stock management

Data Oriented Failure Analysis (DoFa)

Asset 📼	Assembly $\overline{\pi}$	sPart 🔫	sFailure 👻	Delta P \Xi	Flow =	RPM =	Speed 😤	Power =	Moisture \Xi	Temperature =	Level 😤	Particle count =	Weight \Xi	
Sifter	Bearing	BRG-BEARING SEALED (EMEA)	Abrasion							TIA_26000				
Sifter	Bearing	BRG-BEARING SEALED (EMEA)	Adhesion							TIA_26000				
Sifter	Bearing	BRG-BEARING SEALED (EMEA)	Corrosion-Pitting							TIA_26000				
Sifter	Bearing	BRG-BEARING SEALED (EMEA)	Fatigue											
Sifter	Bearing	BRG-BEARING SEALED (EMEA)	Fretting							TIA_26000				
Sifter	Screen	SCREEN (EMEA)	Fails To Remove Particulate		Operator/Productflow		SY_26000	EI_26000					WI_20101	
Sifter	Screen	SCREEN (EMEA)	Restricted Flow		Operator/Productflow		SY_26000	EL_26000		TIA_26000			WI_20101	
Sifter	Seal (air purge)	SEALPLAN API32 (EMEA)	Improper Flow		Operator/Productflow									
Sifter	Seal (air purge)	SEALPLAN API32 (EMEA)	Leakage		Operator/Productflow					TIA_26000				
Sifter	Vibro motor	VIBRO MOTOR	Corrosion		Operator/Productflow									
Sifter	Vibro motor	VIBRO MOTOR	Wear		Operator/Productflow									
Sifter	Motor-AC	BRG-BEARING OIL (EMEA)	Abrasion							TIA_26000				
Sifter	Motor-AC	BRG-BEARING OIL (EMEA)	Adhesion							TIA_26000				
Sifter	Motor-AC	BRG-BEARING OIL (EMEA)	Corrosion-Pitting							TIA_26000				
Sifter	Motor-AC	BRG-BEARING OIL (EMEA)	Fatigue											
Sifter	Motor-AC	BRG-BEARING OIL (EMEA)	Fretting							TIA_26000				
Sifter	Motor-AC	MOTOR ELECTRIC - HOUSING (EMEA)	Distorted											
Sifter	Motor-AC	MOTOR ELECTRIC - ROTOR (EMEA)	Defective Rotor Bar				SY_26000	EI_26000						
Sifter	Motor-AC	MOTOR ELECTRIC - ROTOR (EMEA)	Imbalance				SY_26000	EI_26000						
Sifter	Motor-AC	MOTOR ELECTRIC - WINDINGS (EMEA)	Insulation Failure											
Sifter	Motor-AC	MOTOR ELECTRIC - WINDINGS (EMEA)	Open				SY_26000	EI_26000						
Sifter	Motor-AC	MOTOR ELECTRIC - WINDINGS (EMEA)	Over Heat				SY 26000	EI 26000		TIA 26000				
Sifter	Fan-Centrifugal (Squirrel Cage)	SHAFT (EMEA)	Worn											1
Sifter	Fan-Centrifugal (Squirrel Cage)	SHAFT (EMEA)	Bent											r i
Sifter	Fan-Centrifugal (Squirrel Cage)	SHAFT (EMEA)	Corrosion											
Sifter	Fan-Centrifugal (Squirrel Cage)	SHAFT (EMEA)	Embrittlement											
Sifter	Fan-Centrifugal (Squirrel Cage)	SHAFT (EMEA)	Fatigue											
Sifter	Power Transmission-Belt Drive	COUPLING - BELT (EMEA)	Glazed (Slipping)											
Sifter	Power Transmission-Belt Drive	COUPLING - BELT (EMEA)	Wear				SY_26000	EI_26000		TIA_26000			WL_20101	
Sifter	Power Transmission-Belt Drive	COUPLING - BELT SHEAVE/PULLEY (EMEA)	Worn				SY_26000	EI_26000		TIA_26000			WI_20101	
Sifter	Power Transmission-Belt Drive	COUPLING - BELT SHEAVE/PULLEY (EMEA)	Key Broke/Missing				SY_26000	EI_26000					WI_20101	

Care | 4.0 SINCE '04

DOFA Worksheet example

Executive Summary (Example)

As initiation of the Digitisation project, the DOFA methodology is applied on the selected equipment of the [Example- process]. More information of the methodology and the output for each individual equipment can be found in the following slidedeck. In short, the results of the DOFA sessions are summarized in the table below.

	Residual risks after incrementally implementing monitoring technologies below:						
Asset	"classic" process monitoring	Monitoring Including vib. Analysis	additional (advanced) techniques				
Example pump P0-1000	75,6%	42,2%	17,8%				
Eample pump Location 1	73,3%	42,2%	17,8%				
Example conditioning Tank	83,9%	54,8%	29,0%				
Example Loading pump(s)	66,0%	35,8%	15,1%				
Exmaple press	88,8%	72,9%	17,8%				
Example Cake Crusher	48,0%	36,0%	0,0%				
Average risk	72,6%	47,3%	16,2%				

Here we can generally observe the remaining risk being reduced while investing in detectability. First the investment in online vibration technology reduces a average residual risk from 73% to 47%. Additional advanced techniques under the form of dedicated sensors or anomaly detection algorithms have the potential to further reduce the risk to 16%. These numbers are dependant of the choice what will be developed and/or implemented.?At the end of this slidedeck, you can find a proposed roadmap for next steps. To spread the workload and speed up development, the proposal is made:

Given the existing high rate of adoption of online vibration monitoring in [Location], to reduce the risk by developing and implementing additional advanced detection techniques. Especially for the [Asset] where residual risk remains high...Logically, additional vibration sensors can be deployed where the DOFA output shows its value. Additionally, in [Location 1], integration of process data into the vibration analysis platform can increase detectability for complex equipment. To increase the detection in [Location 2] by implementing online vibration monitoring, later followed by a roll-out of the development made for [Location 1].

- Revamping + Energy efficiency
- Proactive Maintenance
- Stock management

- Revamping + Energy efficiency
- Proactive Maintenance
- Stock management

Organizational issues

Lack of resources / Reduce workload

 First time right : Invest in quality Train

- Lack of resources / Reduce workload
- First time right : Invest in quality Train

Pattern recognition

Pattern recognition

Lack of resources / Reduce workload

 First time right : Invest in quality Train

Care 4.0 SINCE '04

Care | 4.0 SINCE '04

Lack of resources / Reduce workload

 First time right : Invest in quality
 Train

Lack of resources / Reduce workload

 First time right : Invest in quality Train

